บทที่ 3

ปรากฏการณ์ทางธรรมชาติ. . . 
ปรากฏการณ์ทางธรรมชาติ ทางธรณีวิทยาส่วนใหญ่เกิดขึ้นเนื่องจากกระบวนการแปร สัณฐาน (Plate Tectonics) ได้แก่ แผ่นดินไหว คลื่นสึนามิ และภูเขาไฟ ปรากฏการณ์เหล่านี้มักเกิดขึ้นบริเวณรอยต่อของแผ่นธรณี

แผ่นดินไหว    
แผ่นดินไหว (Earthquake) เป็นปรากฏารณ์ธรรมชาติซึ่งเกี่ยวเนื่องกับกระบวนธรณีแปรสัณฐาน (Plate Tectionics) ซึ่งเกิดขึ้นเมื่อหินเปลือกโลกเคลื่อนที่หรือสั่นสะเทือนและคายพลังงานออกมา ซึ่ง สามารถอุปมาอุปมัยได้เหมือนกับการดัดไม้บรรทัด เมื่อเราใช้มือจับปลายไม้บรรทัดทั้งสองข้างแล้วดัดให้โค้งงออย่างช้าๆ จนเกิดความเค้น (Stress) ไม้บรรทัดจะเกิดความเครียด (Strain) ภายใน แม้ว่าจะอ่อนตัวให้โค้งตามแรงที่เราดัด แต่ก็จะคืนตัวทันทีที่เราปล่อยมือ และถ้าหากเราออกแรงดัดมากเกินไป พลังงานซึ่งสะสมอยู่ภายในจะเค้นให้ไม้บรรทัดนั้นหัก และปลดปล่อยพลังงานอย่างฉับพลัน ทำให้เกิดแรงสั่นสะเทือนและเสียง หินในเปลือกโลกก็มีคุณสมบัติดังเช่นไม้บรรทัด เมื่อแผ่นธรณีกระทบกัน แรงกดดันหรือแรงเสียดทานจะทำให้หินที่บริเวณขอบของแผ่นธรณีเกิดความเค้นและ ความเครียด สะสมพลังงานไว้ภายใน เมื่อหินแตกหรือหักก็จะปลดปล่อยพลังงานออกมา ทำให้เกิดการสั่นสะเทือนเป็นแผ่นดินไหว


แผ่นดินไหวที่เมืองซานฟรานซิสโก ปี พ.ศ.2449

แผ่นดินไหวมักเกิดขึ้นที่ใด 
แผ่นดินไหวมักเกิดขึ้นในบริเวณรอยต่อของแผ่นธรณี เนื่องจากเป็นบริเวณที่เกิดกระบวนการธรณีแปรสัณฐาน 3 ลักษณะ



1.แผ่นธรณีเคลื่อนที่ออกจากกัน (Divergent boundaries) แมก มาจากชั้นฐานธรณีภาคดันให้แผ่นธรณีโก่งตัวอย่างช้าๆ จนแตกเป็นหุบเขาทรุด (Rift valley) หรือสันเขาใต้สมุทร (Oceanic Ridge) ทำให้เกิดแผ่นดินไหวขนาดเบาที่ระดับตื้น (ลึกจากพื้นผิวน้อยกว่า 70 กิโลเมตร) เช่นบริเวณกลางมหาสมุทรแอตแลนติก

2.แผ่นธรณีเคลื่อนที่เข้าหากัน (Convergent boundaries) การ ชนกันของแผ่นธรณีสองแผ่นในแนวมุดตัว (Subduction zone) ทำให้แผ่นที่มีความหนาแน่นมากกว่าจมตัวลงตัวสู่ชั้นฐานธรณีภาค การปะทะกันเช่นนี้ทำให้เกิดแผ่นดินไหวอย่างรุนแรงที่ระดับลึก (300 – 700 กิโลเมตร) และหากเกิดขึ้นในมหาสมุทรก็จะทำให้เกิดคลื่นสึนามิ เช่น สันเขาใต้สมุทรใกล้เกาะสุมาตรา และ เกาะฮอนชู ประเทศญี่ปุ่น

3.แผ่นธรณีเคลื่อนที่ผ่านกัน (Transform fault) ทำ ให้เกิดแรงเสียดทานของหินเปลือกโลก แม้ว่าแผ่นธรณีจะเคลื่อนที่ผ่านกันด้วยความเร็วเพียงปีละประมาณ 3 - 6 เซนติเมตร แต่เมื่อเวลาผ่านไป 100 ปี ก็จะเคลื่อนที่ได้ระยะทาง 3 - 6 เมตร ซึ่งถ้าหากหินคืนตัวก็จะสามารถปลดปล่อยพลังงานมหาศาลได้ ดังเช่นรอยเลื่อนซานแอนเดรียส์ก็เคยทำลายเมืองซานฟรานซิสโก ประเทศสหรัฐอเมริกา จนประสบความเสียหายหนักเมื่อปี พ.ศ. 2449




นอกจากบริเวณรอยต่อของแผ่นธรณีแล้ว
แผ่นดินไหวยังเกิดขึ้นที่บริเวณจุดร้อน (Hot spot) ที่ซึ่งหินหนืดร้อนลอยตัวขึ้นจากเนื้อโลกตอนล่างแล้วทะลุเปลือกโลกขึ้น มากลายเป็นภูเขาไฟรูปโล่ เช่น เกาะฮาวาย ที่กลางมหาสมุทรแปซิฟิก และ เกาะไอซ์แลนด์ ที่ตอนบนของมหาสมุทรแอตแลนติก







      เมื่อพิจารณาแผนที่ในภาพจะเห็นได้ว่า แผ่นดินไหวส่วนใหญ่เกิดขึ้นที่บริเวณรอยต่อของแผ่นเปลือกโลก โดยบริเวณที่แผ่นธรณีเคลื่อนที่ออกจากกันและแผ่นธรณีเคลื่อนที่ผ่านกันจะ เกิดแผ่นดินไหวในระดับตื้น ส่วนบริเวณที่แผ่นธรณีเคลื่อนที่เข้าหากันเช่น เขตมุดตัวในวงแหวนไฟ (Ring of fire) รอบมหาสมุทรแปซิฟิก บริเวณหมู่เกาะญี่ปุ่น หมู่เกาะฟิลิปปินส์ หมู่เกาะแปซิฟิกใต้ และชายฝั่งตะวันตกของทวีปอเมริกาใต้ จะเกิดแผ่นดินไหวในระดับลึก ซึ่งมักเป็นตัวการทำให้เกิดคลื่นสินามิ ทั้งนี้ท่านสามารถติดตามการเกิดแผ่นดินไหวของครั้งล่าสุดของโลกได้ที่USGS Lastest Earthquakes in the World

คลื่นไหวสะเทือน
แผ่นดินไหว เป็นปรากฏการณ์ธรรมชาติที่เกิดขึ้นเนื่องจากการเคลื่อนตัวของชั้น หินในเปลือกโลก เมื่อชั้นหินกระทบกันทำเกิดคลื่นไหวสะเทือน (Seismic waves) เราเรียกจุดกำเนิดของคลื่นไหวสะเทือนว่า "ศูนย์เกิดแผ่นดินไหว" (Focus) และเรียกตำแหน่งบนผิวโลกที่อยู่เหนือจุดกำเนิดของคลื่นแผ่นดินไหวว่า "จุดเหนือศูนย์เกิดแผ่นดินไหว" (Epicenter)​ ซึ่งมักจะใช้อ้างอิงด้วยพิกัดละติจูด/ลองจิจูด เมื่อเกิดแผ่นดินไหวจะเกิดคลื่นไหวสะเทือน 2 แบบ คือ คลื่นในตัวกลาง และคลื่นพื้นผิว




คลื่นในตัวกลาง (Body wave) เดินทางจากศูนย์เกิดแผ่นดินไหว ผ่านเข้าไปในเนื้อโลกในทุกทิศทาง ในลักษณะเช่นเดียวกับคลื่นเสียงซึ่งเดินทางผ่านอากาศในทุกทิศทาง คลื่นในตัวกลางมี 2 ชนิด ได้แก่

1.คลื่นปฐมภูมิ (P wave) เป็นคลื่นตามยาวที่เกิดจากความไหวสะเทือนในตัวกลาง โดยอนุภาคของตัวกลางนั้นเกิดการเคลื่อนไหวแบบอัดขยายในแนวเดียวกับที่คลื่น ส่งผ่านไป คลื่นนี้สามารถเคลื่อนที่ผ่านตัวกลางที่เป็นของแข็ง ของเหลว และแก๊ส เป็นคลื่นที่สถานีวัดแรงสั่นสะเทือนสามารถรับได้ก่อนชนิดอื่น โดยมีความเร็วประมาณ 6 – 7 กิโลเมตร/วินาที

2.คลื่นทุติย ภูมิ (S wave) เป็นคลื่นตามขวางที่เกิดจากความไหวสะเทือนในตัวกลางโดยอนุภาคของตัวกลาง เคลื่อนไหวตั้งฉากกับทิศทางที่คลื่นผ่าน มีทั้งแนวตั้งและแนวนอน คลื่นชนิดนี้ผ่านได้เฉพาะตัวกลางที่เป็นของแข็งเท่านั้น ไม่สามารถเดินทางผ่านของเหลว คลื่นทุติยภูมิมีความเร็วประมาณ 3 – 4 กิโลเมตร/วินาที




คลื่นพื้นผิว (Surface wave) เดิน ทางจากจุดเหนือศูนย์กลางแผ่นดินไหว (Epicenter) ไปทางบนพื้่นผิวโลก ในลักษณะเดียวกับการโยนหินลงไปในน้ำแล้วเกิดระลอกคลื่นบนผิวน้ำ คลื่นพื้นผิวเคลื่อนที่ช้ากว่าคลื่นในตัวกลาง คลื่นพื้นผิวมี 2 ชนิด คือ คลื่นเลิฟ (L wave) และคลื่นเรย์ลี (R wave)

1.คลื่นเลิฟ (L wave) เป็น คลื่นที่ทำให้อนุภาคของตัวกลางสั่นในแนวราบ โดยมีทิศทางตั้งฉากกับการเคลื่อนที่ของคลื่น ดังภาพที่ 3 สามารถทำให้ถนนขาดหรือแม่น้ำเปลี่ยนทิศทางการไหล

2.คลื่นเรย์ลี (R wave) เป็น คลื่นที่ทำให้อนุภาคตัวกลางสั่น ม้วนตัวขึ้นลงเป็นรูปวงรี ในแนวดิ่ง โดยมีทิศทางเดียวกับการเคลื่อนที่ของคลื่น ดังภาพที่ 4 สามารถทำให้พื้นผิวแตกร้าว และเกิดเนินเขา ทำให้อาคารที่ปลูกอยู่ด้านบนเกิดความเสียหาย






การหาจุดเหนือศูนย์เกิดแผ่นดินไหว
เครื่องวัดความไหวสะเทือน (Seismograph) ประกอบด้วย 2 ส่วนคือ ปากกาซึ่งติดตั้งบนตุ้มน้ำหนักซึ่งแขวนห้อยติดกับลวดสปริง และม้วนกระดาษบันทึกการสั่นสะเทือนแผ่นดินไหว (Seismogram) โดยที่ทั้งสองส่วนติดตั้งบนแท่นซึ่งยืดอยู่บนพื้นดิน เครื่องวัดความไหวสะเทือนทำงานโดยอาศัยหลักการของความเฉี่อย (Inertia) ของลวดสปริงที่แขวนลูกตุ้ม เมื่อแผ่นดินยกตัวลวดสปริงจะยืดตัว และถ้าหากแผ่นดินจมตัวลวดสปริงก็จะหดขึ้น ดังนั้นไม่ว่าแผ่นดินจะเคลื่อนไหวอย่างไร ลวดสปริงจะคงระดับของตุ้มน้ำหนักไว้ที่ระดับเดิมเสมอ ส่วนม้วนกระดาษจะเคลื่อนที่ขึ้นลงตามการเคลื่อนที่ของแผ่นดิน ดังนั้นปลายปากกาที่ติดตั้งฉากกับตุ้มน้ำหนักจึงวาดเส้นกราฟบนม้วนกระดาษ ซึ่งหมุนรอบแกน เพื่อบันทึกค่าการสั่นไหวของคลื่นไหวสะเทือน ดังภาพที่ 5 (หมายเหตุ: ในความเป็นจริง เครื่องวัดความไหวสะเทือนจะวัดค่าการสั่นสะเทือนทังในแกนตั้งและแกนนอน)





ในการวิเคราะห์ตำแหน่ง จุดเหนือศูนย์เกิดแผ่นดินไหว (Epicenter) นั้น จะต้องอาศัยเครื่องวัดความไหวสะเทือนหลายชุด ทำงานร่วมกันเป็นเครือข่าย เมื่อเกิดแผ่นดินไหวคลื่นในตัวกลางซึ่งประกอบด้วยคลื่น P และคลื่น S จะเดินผ่านภายในของโลกโดยคลื่น P จะเคลื่อนที่เร็วกว่าคลื่น S ส่วนคลื่นพื้นผิว (เช่น คลื่น L และคลื่น R) จะเดินทางไปตามพื้นผิวโลกซึ่งเคลื่อนที่ช้ากว่าคลื่นในตัวกลาง ภาพที่ 6 แสดงให้เห็นว่า เครื่องวัดความไหวสะเทือนจะบันทึกค่าการไหวสะเทือนของ คลื่น P ได้ก่อนคลื่น S แล้วตามด้วยคลื่นพื้นผิว ตามลำดับ สถานี ก ที่อยู่ใกล้จุดเกิดแผ่นดินไหว (Focus) จะบันทึกค่าการไหวสะเทือนได้ก่อนสถานี ข ซึ่งอยู่ไกลกว่า


ความรุนแรงของแผ่นดินไหว


มาตราเมอร์คัลลี

แผ่นดินไหวแต่ละครั้งมีความรุนแรงไม่เท่ากัน บางครั้งไม่สามารถรู้สึกได้ แต่บางครั้งก็ทำให้เกิดความเสียหายอย่างรุนแรง เช่น อาคารถล่ม ถนนขาด แผ่นดินทรุด ทำให้ผู้คนล้มตายเป็นจำนวนมาก ระบบวัดความรุนแรงของแผ่นดินไหวที่เข้าใจง่ายที่สุดคือ มาตราเมอร์คัลลี (Mercalli scale) ซึ่งกำหนดจากความรู้สึกหรือการตอบสนองของผู้คนโดยจำแนกได้ดังนี้
        I     มนุษย์ไม่รู้สึก ตรวจวัดได้เฉพาะเครื่องมือ
        II    รู้สึกได้เฉพาะกับผู้ที่อยู่นิ่งกับที่ สิ่งของแกว่งไกวเล็กน้อย 
        III   คนอยู่ในบ้านรู้สึกได้เหมือนรถบรรทุกแล่นผ่าน
        IV   คนส่วนใหญ่รู้สึกได้เหมือนรถบรรทุกแล่นผ่าน 
        V    ทุกคนรู้สึกได้ สิ่งของขนาดเล็กเคลื่อนที่
        VI   คนเดินเซ สิ่งของขนาดใหญ่เคลื่อนที่ 
        VII  คนยืนนิ่งอยู่กับที่ไม่ได้ อาคารเสียหายเล็กน้อย
        VIII อาคารเสียหายปานกลาง
        IX   อาคารเสียหายอย่างมาก 
        X    อาคารถูกทำลายพร้อมฐานราก 
        XI   แผ่นดินแยกถล่มและเลื่อนไหล สะพานขาด รางรถไฟบิดงอ ท่อใต้ดินชำรุดเสียหาย 
        XII  สิ่งปลูกสร้างทั้งหมดถูกทำลาย พื้นดินเป็นลอนคลื่น  



มาตราริกเตอร์

มาตราวัดขนาดแผ่นดินไหวของริกเตอร์ (The Richter Magnitude Scale) พัฒนาโดย ชาร์ล เอฟ ริกเตอร์ นักธรณีวิทยาชาวอเมริกาเมื่อปี พ.ศ.2478 เป็นมาตราที่วัดขนาดของแผ่นดินไหว ซึ่งบันทึกได้จากเครื่องวัดคลื่นไหวสะเทือนโดยใช้หน่วย “ริกเตอร์” (Richter) เป็นตัวเลขที่ทำให้สามารถเปรียบเทียบขนาดของแผ่นดินไหวต่างๆ กันได้ โดยคำนวนจากสูตรทางคณิตศาสตร์เป็น logarithm ของความสูงของคลื่นแผ่นดินไหวที่บันทึกได้ ยกตัวอย่างเช่น แผ่นดินไหวขนาด 7 ริกเตอร์ มีความรุนแรงเป็น 10 เท่าของแผ่นดินไหวขนาด 6 ริกเตอร์ และมีความรุนแรงเป็น 100 เท่าของแผ่นดินไหวขนาด 5 ริกเตอร์

ขนาด (Magnitude) ของแผ่นดินไหวเป็นตัวเลขทางคณิตศาสตร์ที่บ่งชี้ความร้ายแรงของแผ่นดินไหวที่ เกิดขึ้น เมื่อเปรียบเทียบกับแผ่นดินไหวที่เกิดขึ้นที่ระดับเป็นศูนย์ โดยกำหนดให้แผ่นดินไหวที่เกิดที่ระดับเป็นศูนย์ มีค่าความสูงของคลื่น 0.001 มม. ที่ระยะทาง 100 กิโลเมตร จากศูนย์กลางแผ่นดินไหว (Epicenter) ขนาดของแผ่นดินไหวตามมาตราริกเตอร์บอกเป็นตัวเลข จำนวนเต็มและจุดทศนิยม ดังนี้

 ขนาดแผ่นดินไหว (ริกเตอร์)         ประเภท
<3.0                                      แผ่นดินไหวขนาดเล็กมาก (Micro)
3.0 - 3.9                                แผ่นดินไหวขนาดเล็ก (Minor)
4.0 - 4.9                                แผ่นดินไหวขนาดค่อนข้างเล็ก (Light)
5.0 - 5.9                                แผ่นดินไหวขนาดปานกลาง (Moderate)
6.0 - 6.9                                แผ่นดินไหวขนาดค่อนข้างใหญ่ (Strong)
7.0 - 7.9                                แผ่นดินไหวขนาดใหญ่ (Major)
>8.0                                      แผ่นดินไหวใหญ่มาก (Great)


คลื่นสึนามิ
คลื่นสึนามิ (Tsunami) เป็นคลื่นที่เกิดขึ้นจากแผ่นดินไหว แต่คลื่นผิวน้ำที่เรารู้จักกันทั่วไปเกิดจากแรงลมพัด พลังงานจลน์จากอากาศถูกถ่ายทอดสู่ผิวน้ำทำให้เกิดคลื่น ขนาดของคลื่นจึงขึ้นอยู่กับความเร็วลม หากสภาพอากาศไม่ดีมีลมพายุพัด คลื่นก็จะมีขนาดใหญ่ตามไปด้วย ในสภาพปกติคลื่นในมหาสมุทรจะมีความสูงประมาณ 1 - 3 เมตร แต่คลื่นสึนามิเป็นคลื่นยักษ์มีขนาดใหญ่กว่าคลื่นผิวน้ำหลายสิบเท่า พลังงานจลน์จากแผ่นดินไหวใต้มหาสมุทรถูกถ่ายทอดจากใต้เปลือกโลกถูกถ่ายทอด ขึ้นสู่ผิวน้ำ แล้วขยายตัวทุกทิศทุกทางเข้าสู่ชายฝั่ง คำว่า “สึ” เป็นภาษาญี่ปุ่นแปลว่าท่าเรือ "นามิ" แปลว่าคลื่น ที่เรียกเช่นนี้เป็นเพราะ ชาวประมงญี่ปุ่นออกไปหาปลา พอกลับมาก็เห็นคลื่นขนาดยักษ์พัดทำลายชายฝั่งพังพินาศ


จุดกำเนิดคลื่นสึนามิ

คลื่นสึนามิมีจุดกำเนิดจากศูนย์เกิดแผ่นดินไหวบริเวณเขตมุดตัว (Subduction zone) ซึ่งอยู่บริเวณรอยต่อของแผ่นธรณีเคลื่อนที่เข้าหากัน (Convergent plate boundary) เมื่อแผ่นธรณีมหาสมุทรเคลื่อนปะทะกัน หรือชนเข้ากับแผ่นธรณีทวีป แผ่นมหาสมุทรซึ่งมีความหนาแน่นจะจมตัวลงสู่ชั้นฐานธรณีภาค ทำให้เกิดแผ่นดินไหวอย่างรุนแรงที่ระดับลึก


เมื่อเปลือกโลกใต้มหาสมุทร ยุบตัวลงเป็นร่องลึกก้นสมุทร (Oceanic trench) น้ำทะเลที่อยู่ด้านบนก็จะไหลยุบตามลงไปด้วยดังภาพที่ 2 น้ำทะเลในบริเวณข้างเคียงมีระดับสูงกว่า จะไหลเข้ามาแทนที่แล้วปะทะกัน ทำให้เกิดคลื่นสะท้อนกลับในทุกทิศทุกทาง (เหมือนกับการที่เราขว้างก้อนหินลงน้ำ)





นอกจากสาเหตุจากแผ่นดินไหวแล้ว คลื่นสึนามิอาจเกิดขึ้นจากภูเขาไฟระเบิด ภูเขาใต้ทะเลถล่ม หรืออุกกาบาตพุ่งชนมหาสมุทร แรงสั่นสะเทือนเช่นนี้ทำให้เกิดคลื่นขนาดยักษ์ที่มีฐานกว้าง 100 กิโลเมตร แต่สูงเพียง 1 เมตร เคลื่อนที่ด้วยความเร็วประมาณ 700 – 800 กิโลเมตรต่อชั่วโมง เมื่อคลื่นเดินทางเข้าใกล้ชายฝั่ง สภาพท้องทะเลที่ตื้นเขินทำให้คลื่นลดความเร็วและอัดตัวจนมีฐานกว้าง 2 – 3 กิโลเมตร แต่สูงถึง 10 – 30 เมตร ดังภาพที่ 3 เมื่อคลื่นสึนามิกระทบเข้ากับชายฝั่งจึงทำให้เกิดภัยพิบัติมหาศาล เป็นสาเหตุการตายของผู้คนจำนวนมาก เนื่องมาจากก่อนเกิดคลื่นสึนามิเพียงชั่วครู่ น้ำทะเลจะลดลงอย่างรวดเร็ว ผู้คนบนชายหาดประหลาดใจจึงเดินลงไปดู หลังจากนั้นไม่นาน คลื่นยักษ์ก็จะถาโถมสู่ชายฝั่ง ทำให้ผู้คนเหล่านั้นหนีไม่ทัน


คลื่นสึนามิบริเวณประเทศไทย


สถิติที่ประวัติศาสตร์บันทึกไว้ จะมีการเกิดคลื่นสึนามิขนาดใหญ่โดยเฉลี่ยทุกๆ 15 – 20 ปี แต่โดยส่วนมากแล้วจะเกิดขึ้นในมหาสมุทรแปซิฟิก เนื่องจากเป็นมหาสมุทรที่ใหญ่ที่สุดในโลกมีอาณาเขตปกคลุมครึ่งหนึ่งของ เปลือกโลก จึงมีโอกาสเกิดแผ่นดินไหวได้มากที่สุด คลื่นสึนามิที่มีขนาดใหญ่ที่สุด มีขนาดสูงถึง 35 เมตร ที่เกาะสุมาตรา เกิดขึ้นจากแรงสั่นสะเทือนจากการระเบิดของภูเขาไฟกรากาตัว เมื่อวันที่ 27 สิงหาคม พ.ศ.2426

คลื่นสึนามิในประเทศไทย เมื่อวันที่ 26 ธันวาคม พ.ศ. 2547 เกิดขึ้นเนื่องจากแผ่นดินไหวที่บริเวณร่องลึกซุนดรา (Sundra trench) เกิดการยุบตัวของเปลือกโลกบริเวณรอยต่อของแผ่นธรณีอินเดีย (India plate)​ กับแผ่นธรณีพม่า (Burma microplate) ทำให้เกิดแรงสั่นสะเทือน 9.1 ริกเตอร์ โดยมีจุดเหนือศูนย์เกิดแผ่นดินไหวอยู่ทางทิศตะวันตกเฉียงเหนือของเกาะ สุมาตราดังภาพที่ 4 เหตุการณ์นี้ทำให้คนตายมากกว่า 226,000 คน ตามชายฝั่งของมหาสมุทรอินเดีย ในจำนวนนี้เป็นคนไทยไม่น้อยกว่า 5,300 คน


ระบบแจ้งเตือนคลื่นสึนามิ  
ระบบแจ้งเตือนคลื่นสึนามิระบบแรกของโลกถูกจัดตั้งขึ้นหลังจากอุบัติภัยที่ หมู่เกาะฮาวาย ในปี พ.ศ.2489 ประเทศสหรัฐอเมริกาจัดตั้ง “ศูนย์แจ้งเตือนคลื่นสึนามิแปซิฟิก” (Pacific Tsunami Warning Center) หรือ PTWC โดยมีติดตั้งสถานีตรวจวัดแผ่นดินไหวจำนวน 50 แห่ง รอบมหาสมุทรแปซิฟิก ระบบทำงานโดยการตรวจจับคลื่นไหวสั่นสะเทือน ซึ่งเดินทางรวดเร็วกว่าคลื่นสึนามิ 15 เท่า ข้อมูลที่ตรวจวัดได้จากทุกสถานีถูกนำรวมกัน เพื่อพยากรณ์หาตำแหน่งที่มีความเป็นไปได้ที่จะเกิดคลื่นสึนามิ เมื่อคลื่นสึนามิถูกตรวจพบ ระบบจะแจ้งเตือนเมืองที่อยู่ชายฝั่ง รวมทั้งประมาณเวลาสถานการณ์ที่คลื่นจะเข้าถึงชายฝั่ง เพื่อที่จะอพยพประชาชนไปอยู่ที่สูง และให้เรือที่จอดอยู่ชายฝั่งเดินทางสู่ท้องทะเลลึก ณ ที่ซึ่งคลื่นสึนามิส่งไม่ส่งผลกระทบอันใด อย่างไรก็ตามระบบเตือนภัยนี้สามารถทำการแจ้งเตือนล่วงหน้าเพียงไม่กี่ ชั่วโมงเท่านั้น การอพยพผู้คนมักทำได้ไม่ทันท่วงทีเนื่องจากคลื่นสึนามิเดินทางรวดเร็วมาก

การตรวจจับคลื่นสึนามิไม่ใช่เรื่องง่าย เนื่องจากขณะที่เกิดขึ้นกลางมหาสมุทร คลื่นสึนามิมีฐานกว้างถึง 100 กิโลเมตร แต่สูงเพียง 1 เมตร อีกทั้งยังมีคลื่นผิวน้ำซึ่งเกิดจากกระแสลมวางซ้อนอยู่ด้านบนอีก ดังนั้นการสังเกตการณ์จากเครื่องบินหรือดาวเทียมจึงไม่สามาถพิสูจน์ทราบได้ การตรวจจับคลื่นสึนามิทำได้ด้วยการตรวจจับสัญญาณจากทุ่นลอยและเครื่องวัด คลื่นไหวสะเทือนเท่านั้น




ระบบเตือนภัยยุคใหม่ ซึ่งพัฒนาโดย องค์การบริหารบรรยากาศและมหาสมุทร (NOAA) ประเทศสหรัฐอเมริกา ชื่อ DART (ย่อมาจาก Deep-ocean Assessment and Reporting of Tsunamis) ติดตั้งเซนเซอร์วัดแรงสั่นสะเทือนไว้ที่ท้องมหาสมุทร เซนเซอร์เก็บข้อมูลแผ่นดินไหวและส่งสัญญานไปยังทุ่นลอยซึ่งอยู่บนผิวน้ำ เพื่อรีเลย์สัญญาณไปยังดาวเทียม GOES และส่งกลับลงบนสถานีภาคพื้นอีกทีหนึ่ง (ภาพที่ 5) นักวิทยาศาสตร์จะนำข้อมูลที่ได้มาสร้างแบบจำลองด้วยเครื่องคอมพิวเตอร์ เพื่อพยากรณ์แนวโน้มการเกิดคลื่นสึนามิ หากผลการจำลองและวิเคราะห์ว่ามีโอกาสความเป็นไปได้จะเกิดคลื่นยักษ์ ก็จะแจ้งเตือนไปยังศูนย์ชายฝั่ง เพื่อให้ประชาชนและชาวประมงในพื้นที่ให้รีบอพยพออกจากบริเวณที่อันตราย




ไม่มีความคิดเห็น:

แสดงความคิดเห็น